
A Clean, Green Haven?- Examining the Relationship between Clean
Energy, Clean and Dirty Cryptocurrencies

Boru Rena, Brian Lucey a,b,c,∗

aTrinity Business School, Trinity College Dublin, Dublin 2, Ireland

bDistinguished Research Fellow, Institute of Business Research, University of Economics Ho Chi Minh City, 59C
Nguyen Dinh Chieu, Ward 6, District 3, Ho Chi Minh City, Vietnam

cInstitute for Industrial Economics, Jiangxi University of Economics and Finance, 169, East Shuanggang Road,
Xialuo, Changbei District 330013 Nanchang, Jiangxi, China

∗Corresponding Author: blucey@tcd.ie

Abstract

Is clean energy a safe haven for cryptocurrencies, or vice versa? In this paper, we investigate
the hedge and safe haven property of a wide range of clean energy indices against two distinct
types of cryptocurrencies based on their energy consumption levels, termed black or ’dirty’ and
green or ’clean’. Statistical evidence shows that clean energy is not a direct hedge for either of
types. However, it serves as at least a weak safe haven for both in extreme bearish markets.
Moreover, clean energy is more likely to be a safe haven for ’dirty’ cryptocurrencies than ’clean’
cryptocurrencies during increased uncertainty. We further study the spillover patterns among clean
energy, cryptocurrency, stock, and gold markets. Weak connectedness is found between clean energy
and cryptocurrencies which implies the potential use of clean energy as a hedge and diversification
tool for cryptocurrencies in the future.
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1. Introduction

Conventional cryptocurrencies that require massive energy use (hereinafter referred to as "black"
or "dirty" cryptocurrencies) have been developing rapidly and become sought-after assets. This
energy footprint has caused significant ecological damage and has resulted in heightened public
concerns (Corbet and Yarovaya [2020]). In a recent study of Mora et al. [2018], the authors projected
that the carbon emissions from the continuous adoption of Bitcoin, the most representative dirty
cryptocurrency, might itself lift global warming beyond two degrees Celsius within thirty years. The
estimated annual energy usage of Bitcoin now has increased to 169.98 TWh, not just comparable
but even higher than the gross power consumption of Poland.1 Due to its computationally expensive
’Proof of Work’ mechanism, a single transaction of Bitcoin is estimated to consume approximately
1834.02 kWh electricity which is equivalent to the amount of energy used by an American family
for more than 62 days. Researchers have been emphasising the urgency of reducing cryptocurrency
mining activities and using non ’Proof of Work’ cryptocurrencies (Schinckus [2021]). To address
these environmental issues and meet the expectation of greener industry, increasing number of eco-
friendly cryptocurrencies (hereinafter: "green" or "clean" cryptocurrencies) are being launched to
compete in the market, and some of them have already become leading cryptocurrencies by market
capitalisation, such as Cardano and Ripple.

At the same time we have also seen a strong growth track in clean energy. Revenue of clear
energy companies is just under $700b, with an annual growth rate of 6.8%.2 There have been
created a wide range of clean energy related equity indices to capture the movements of publically
quoted clean energy related companies, and much research has emerged showing their usefulness in
acting as portfolio constituents against regular stock and bond indices (see as examples Rezec and
Scholtens [2017], Ahmad and Rais [2018] , Kuang [2021])

The extant literature on the relationship between cryptocurrencies and other assets has often
considered traditional energy assets due to the tremendous energy use involved in most cryptocur-
rency mining and transactions. Jiang et al. [2022] analysed the role of Bitcoin, gold, equity, foreign
exchange and energy (crude oil / natural gas) played in the global volatility connectedness network.
They argued that the overall volatility transmission in the financial system is possibly driven by
external investor attention between different markets. Moreover, they found that Bitcoin, gold,
foreign exchange and natural gas were volatility transmitters, while crude oil and the stock market
were receivers. Ji et al. [2019] tested the information interdependence between leading cryptocur-
rencies and several commodities and they pointed out that the cryptocurrencies was unexpectedly
weakly connected, but still integrated to energy markets such as natural gas, unleaded gas, heating

1Retrieved from https://digiconomist.net/bitcoin-energy-consumption on Oct 5, 2021
2https://www.businesswire.com/news/home/20210902005385/en/Global-Renewable-Energy-Industry-Guide-

2021-Value-and-Volume-2016-2020-and-Forecast-to-2025---ResearchAndMarkets.com
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oil, and crude oil using both static and dynamic entropy-based spillover measures. Zeng et al. [2020]
showed that the financial linkage between Bitcoin and traditional assets such as stock, oil, and gold
was weak, but was increasing. Rehman and Kang [2021] documented the existence of lead-lag re-
lationships between Bitcoin and crude oil and natural gas, while it was not the case for coal, which
is quite interesting as we know that China is the largest Bitcoin miner where power generation
relies extensively on coal. Akyildirim et al. [2021] further investigated the dynamic correlation
and extreme dependence between Bitcoin and Chinese coal markets. They showed that dynamic
correlations between Bitcoin and coal indices increased when extreme mining events occurred in
China and such incidents were likely to induce Bitcoin volatilities. Okorie [2021] and Corbet et al.
[2021] discovered significant correlation and volatility spillovers between leading cryptocurrencies
and electricity markets. Okorie and Lin [2020] found both bi-directional and uni-directional volatil-
ity spillovers between the crude oil market and cryptocurrencies. They further claimed that crude
oil was a good hedge tool for risks of holding various cryptocurrencies. While Umar et al. [2021]
showed that cryptocurrency market was less connected with global technology sectors. Le et al.
[2021] further investigated whether the spillover patterns between financial technology stocks and
Bitcoin, gold, global stock, crude oil, and foreign exchange were changed by Covid-19 outbreak.
Results suggest that the pandemic has shaped and strengthened the volatility spillovers across mar-
kets and only gold and U.S. dollar remained as safe havens, while other assets such as Bitcoin, oil,
financial technology stocks being large volatility spillover receivers were not. Maghyereh and Ab-
doh [2020], Bouri et al. [2018], and Uzonwanne [2021] examined the direction of spillovers between
Bitcoin and other markets. Wang et al. [2021] measured the time and frequency connectedness
among Bitcoin and other assets including stock, gold oil, etc, but from a hedge perspective.

Relatively little literature has focused attention on the linkage between cryptocurrency and
green markets, even after the latter market has witnessed a major rise in recent years, especially for
clean energy actions which are sustainable alternatives to traditional carbon-intensive energy such
as electricity, oil, and coal. Le et al. [2021] considered green bonds time and frequency domain con-
nectedness between cryptocurrencies and a variety of assets, but their focal point was on financial
technology and not clean energy stocks. If we find that particular types of cryptocurrency can act
as safe havens or hedges against clean energy, or vice versa, it has implications for investors. For
example, it may be practical to protect against drawdowns in clean energy stocks using cryptocur-
rencies. But the form of currency matters. If we find that only dirty cryptocurrencies are a useful
hedge or haven against clean energy that suggests that the economic incentive to invest in clean
energy will be counter to the ecological argument.

There are few papers which could be regarded as closely related to our research. For instance,
Symitsi and Chalvatzis [2018] examined the spillovers among, Bitcoin, fossil and clean energy, and
technology indices. There were significant return spillovers from energy and technology markets to
Bitcoin, while volatility spillovers were found from Bitcoin to energy markets in the long run and
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from technology market to Bitcoin in the short run. While Corbet et al. [2021] showed that there
was no significant linkage between the volatility of Bitcoin price and largest green ETFs markets,
Naeem and Karim [2021] further used a time-varying optimal copula approach to examine the tail
dependence between Bitcoin and green investments. They found no tail dependence between clean
energy and Bitcoin, but they suggested that clean energy was a potential diversification tool for
Bitcoin as the hedge ratio and hedge effectiveness were with clean energy in the portfolio. A similar
comment was provided by Pham et al. [2021] who proposed that green investments could offer
diversification benefits to cryptocurrency since only weak connectedness between cryptocurrencies
such as Bitcoin and Ethereum and green assets was found during non-crisis periods. However, these
papers actually opened up a question - whether clean energy is a direct hedge or even a safe haven
for Bitcoin or Ethereum, or more broadly, for cryptocurrencies. Moreover, although there has been
quite a lot of work done on the interconnection of cryptocurrency with other financial assets, the
debate on whether Bitcoin or cryptocurrency market is isolated from other assets (markets) has
not come to an end.3

To answer the above questions we tested the potential role for clean energy as a hedge or safe
haven for two distinct types of cryptocurrencies based on their characteristics of eco-efficiency4,
termed black and green, and also the spillovers across these, along with general stock and gold
markets. The dirty cryptocurrencies are all built on Proof-of-Work algorithms for consensus which
results in massive energy usage regarding mining and transactions, while clean cryptocurrencies are
built on different varieties of energy-efficient consensus algorithms, including Proof-of-Stake, Ripple
Protocol, Stellar Protocol, and some other alternatives.

Our study contributes to the literature from at least four aspects. First, we provide statistical
evidence that clean energy is not a direct hedge for either black or green cryptocurrencies currently.

Second, our study is among the first to empirically examine the safe haven property of a wide
range of clean energy indices during dirty and clean cryptocurrency market turmoils and its reverse.
We found that, in general, clean energy serve as at least a weak safe haven in times of extreme
falling cryptocurrency markets. In times of increased volatility, clean energy is more likely to serve
as a safe haven for dirty cryptocurrencies than for clean cryptocurrencies.

Third, we measured the dynamic connectedness between different clean energy subsectors and
cryptocurrencies, which has not been done in previous literature. Findings reveal that none of
the clean energy subsectors, nor general stock, or the gold market is strongly associated with
cryptocurrency markets, which extends the understanding of the research on the interconnection of
cryptocurrencies with other markets.

3See Ji et al. [2018] and Corbet et al. [2020] as examples.
4Corbet et al. [2021] suggested that cryptocurrencies have varying carbon footprints and power usage levels,

possibly affecting how they interact with energy and utility businesses.
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Fourth, our findings also provide references and implications for regulators and policy makers
as well as cryptocurrency founders in the context of promoting greener society.

The remainder of this paper is organised as follows. Section 2 describes the data, followed by
Section 3 which details the methodology used in the analysis. Section 4 presents the empirical
findings and Section 5 checks the robustness of previous results. Lastly, Section 6 concludes and
addresses the implications of our study.

2. Data

We collected daily closing price data for five major dirty cryptocurrencies including Bitcoin
(BTC), Ethereum (ETH), Bitcoin Cash (BCH), Ethereum Classic (ETC) and Litcoin (LTC), as
well as five green cryptocurrencies, Cardano (ADA), Ripple (XRP), IOTA (MIOTA), Stellar (XLM),
and Nano (NANO) from CoinMarketCap5, spanning from January 1, 2018 to September 17, 2021.6

We further created two value-weighted indices of the dirty and clean cryptocurrencies, respectively
named as DCRYPT and CCRYPT to track the overall performance of the two distinct cryptocur-
rency groups. Next, clean energy indices sourced from Bloomberg were used to represent the
performance of the clean energy industry. We not only used the S&P Global Clean Energy Index
(SPGTCED) and WilderHill Clean Energy Index (ECO) which tracks the overall performance of
global or U.S. clean energy sectors, but also selected several indices from NASDAQ OMX Green
Economy Index Family to track the performance of individual clean energy subsectors, following
the literature of Pham [2019]. Specifically, we used the NASDAQ OMX Bio/Clean Fuels Index
(GRNBIO), Fuel Cell Index (GRNFUEL), Renewable Energy Index (GRNREG), Geothermal In-
dex (GRNGEO), Solar Energy Index (GRNSOLAR), and Winde Energy Index (GRNWIND). To
account for the general stock market performance, we collected the data for the S&P 500 Index
(SP500) from Bloomberg. Finally, we collected the London P.M. gold fixing price (GOLD) from
Federal Reserve Economic Data.7 Note that all data are sourced in U.S. dollars and transformed
to their first-differenced natural logarithms before use.8 Table 1 summaries the statistics for the
log returns in percentage.

5https://www.coinmarketcap.com.
6Our selection took into account both market capitalisation and data availability during the period.
7https://fred.stlouisfed.org/series/GOLDPMGBD228NLBM.
8The number of observations used in spillover analysis is less than that in safe haven analysis as we included gold

in the spillover analysis which has slightly fewer trading days than the stock markets
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Table 1: Descriptive statistics of returns (%)

Mean Min Max Std.Dev Skewness Kurtosis
SPGTCED 0.088 -12.498 11.035 1.697 -0.895 10.976
ECO 0.115 -16.239 13.399 2.417 -0.659 6.758
GRNBIO 0.049 -18.193 13.394 2.277 -1.379 13.014
GRNFUEL 0.177 -18.028 21.617 3.839 0.179 3.712
GRNREG 0.068 -15.256 8.930 1.319 -1.639 25.592
GRNGEO 0.015 -13.390 18.255 2.185 0.692 11.356
GRNSOLAR 0.105 -19.334 12.049 2.551 -0.703 6.558
GRNWIND 0.068 -10.982 7.720 1.581 -0.283 4.716
BTC 0.128 -46.473 20.305 4.761 -1.155 11.418
ETH 0.146 -55.071 35.365 6.273 -0.792 8.789
ETC 0.053 -50.779 35.865 7.114 -0.441 7.241
BCH -0.146 -56.140 42.082 7.466 -0.348 8.891
LTC -0.026 -44.901 29.062 6.238 -0.667 7.090
ADA 0.111 -50.364 32.180 7.251 0.001 4.179
XRP -0.079 -55.040 62.668 7.426 0.236 12.521
XLM -0.046 -41.004 55.932 7.303 0.667 8.968
MIOTA -0.088 -54.333 33.224 7.495 -0.528 6.713
NANO -0.182 -61.455 54.654 9.135 0.029 8.074
DCRYPT 0.136 -47.692 19.470 4.917 -1.270 11.150
CCRYPT 0.028 -41.826 55.388 6.780 0.036 9.225
SP500 0.053 -12.765 8.968 1.361 -1.117 18.298
GOLD 0.031 -5.265 5.133 0.913 -0.453 5.478

3. Methodology

3.1. Safe haven analysis

We adopted the estimation framework introduced by Baur and Lucey [2010] and Baur and
McDermott [2010] to examine the hedge and safe haven property of clean energy indices against
dirty and clean cryptocurrencies. Similar to Akhtaruzzaman et al. [2021], Peng [2020] and Ratner
and Chiu [2013], we started by using a dynamic conditional correlation Generalized Autoregressive
Conditional Heteroskedasticity (DCC–GARCH) model proposed by Engle [2002] to estimate the
correlation of underlying asset pairs.

The estimation comprises two steps. The first is to estimate a GARCH(1,1) model. Let rt be
the N × 1 vector of pairs of return series r1t and r2t, given the information set It−1:

rt = µt + ϵt,

ht = α0 + α1ϵ
2
t−1 + βht−1,

(1)

where ϵ is the vector of residuals.
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Secondly, we estimated the DCC parameter. Let Ht be the conditional covariance matrix of rt.
We had assumed rt to be normally distributed with a zero mean and we wrote Ht as the following:

Ht = DtRtDt,

Dt = diag [h
1/2
1t , h

1/2
2t ],

Rt = diag[Qt]
−1/2 Qt diag[Qt]

−1/2,

(2)

where Rt denotes the matrix of time-varying conditional correlations, Qt is the positive definite
matrix of q12,t, and ht is the conditional standard deviations (SDs). Then we could get the estimated
DCC model as:

Qt = (1− a− b)Q̄+ aut−1u
T
t−1 + bQt−1, (3)

where a and b are non-negative scalars satisfying a + b < 1, and Q̄ is the unconditional variance
matrix of standardised residuals ut. We could thereby obtain the dynamic conditional correlations
series ρ12,t as:

ρ12,t = q12,t/
√
q11,t q22,t. (4)

With the dynamic conditional correlations between cryptocurrencies and clean energy indices,
we now could proceed to examine the safe haven property of clean energy against cryptocurrencies.
Following the work of Ratner and Chiu [2013] and Peng [2020], the dynamic conditional correlation
DCCt were regressed on dummy variables representing the extreme movements of assets as follows:

DCCij,t = c0 + c1D(rcryptoq10) + c2D(rcryptoq5) + c3D(rcryptoq1), (5)

where D(...) are dummy variables that capture extreme negative returns of a cryptocurrency at the
10%, 5%, and 1% quantiles of the distribution. According to the definition of safe haven in Baur and
Lucey [2010], clean energy is a weak hedge for an individual cryptocurrency if c0 is insignificantly
different from zero, or a strong hedge if c0 is negative. Clean energy serves as a weak (strong) safe
haven for an individual cryptocurrency under certain market condition if any of c1, c2 or c3 are
non-positive (significantly negative).

Alternatively, a similar approach to the Equation 5 is to regress DCCt on the lagged extreme
conditional volatility of dirty or green cryptocurrency index which is proxied for market uncertainty,
motivated by Baur and McDermott [2010]:

DCCij,t = c0 + c1D(vcryptoq90,t−1) + c2D(rcryptoq95, t− 1) + c3D(rcryptoq99, t− 1), (6)
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where the dummy variables c1, c2 and c3 here are equal to one if the conditional volatility at t− 1

exceeds the 90%, 95% and 99% quantiles, respectively. This allows us to examine the safe haven
property of clean energy against cryptocurrencies during increased market uncertainty.

To investigate the other way around that whether cryptocurrencies are safe havens for clean
energy stocks in times of extreme negative markets and uncertainty, we simply replaced with clean
energy data on the right hand side for Equation 5 and 6, respectively.

3.2. Spillover measures

We used the Diebold and Yilmaz [2012] (DY2012) connectedness approach to estimate the
spillover effects between clean energy indices and cryptocurrency indices. The DY2012 model is
basically a generalised vector autoregressive (VAR) model which can be used to trace the dynamic
spillover relationship between two time series in a rolling window basis.

We began with a VAR model with an infinite order of P :

yt =

P∑
i=1

φiyt−i + εt, (7)

where yt is the vector of endogenous variables, φi is the matrix of parameters, and εt represents
the vector of i.i.d. residuals.

In addition, we wrote the moving average representation of the model defined in Equation 7 as:

yt =

∞∑
i=0

Aiεt−i, (8)

where the coefficient of the N ×N matrix Ai is recursively determined as Ai = φ1Ai−1+φ2Ai−2+

. . . + φk−1Ai−k+1 + φkAi−k, but noted that Ai equals to zero if i is a negative number. A0 is an
identity matrix.

Under the framework of generalised VAR model, ϕij(H), the H-step ahead generalized forecast
error variance was first decomposed and then normalised by its row sum as the following:

ϕij(H) =
σ−1jj

∑H−1
h=0 (e′iAhΣej)

2∑H−1
h=0 (e′iAhΣA′hei)

,

ϕ̃ij(H) =
ϕij(H)∑N
j=1 ϕij(H)

(9)

where the σjj denotes the estimated SD of the error term for variable j, Σ is the variance matrix
for the error-term vector ε, and ei is the selection vector with one as the ith element and zero
otherwise.
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Ultimately, the total spillover (TS), directional spillover received by asset i from j (DSi←j), di-
rectional spillover transmitted to j by i (DSi→j), and net spillover (NS) indices could be calculated
as the following:

TS(H) =

∑N
i,j=1,i̸=j ϕ̃ij(H)∑N

i,j=1 ϕ̃ij(H)
× 100 =

∑N
i,j=1,i̸=j ϕ̃ij(H)

N
× 100 (10)

DSi←j(H) =

∑N
j=1,j ̸=i ϕ̃ij(H)∑N
i,j=1 ϕ̃ij(H)

× 100 =

∑N
j=1,j ̸=i ϕ̃ij(H)

N
× 100 (11)

DSi→j(H) =

∑N
j=1,j ̸=i ϕ̃ji(N)∑N
i,j=1 ϕ̃ji(H)

× 100 =

∑N
j=1,j ̸=i ϕ̃ji(H)

N
× 100 (12)

NSi(H) = DSi→j(H)−DSi←j(H) (13)

4. Results

4.1. Safe haven analysis

4.1.1. Dynamic conditional correlations

Table 2 lists the average DCC coefficients between clean energy indices and the two groups
of cryptocurrencies. All mean DCC coefficients are universally positive. The time-varing DCCs
between clean energy indices and cryptocurrencies are in the Appendix A. From Appendix A.1 to
Appendix A.8, it can be observed that large variations in correlations appeared around the April of
2020 for most pairs, except for GRNFUEL versus NANO and GRNGEO versus ETC. The dynamic
correlations between GRNFUEL and both ETC and NANO and that between GRNGEO and both
ETC and IMOTA were lower, but more stable than the other pairs. Complemented by Table 2, we
found that the correlations between clean energy indices and cryptocurrencies were positive in most
of the time, regardless of cryptocurrency types, which implies that the clean energy indices might
not have direct hedge potentials for both types of cryptocurrency during the periods under study
and in the near future. Moreover, clean energy stocks reacted heterogeneously to cryptocurrencies
and there is no differentiated patterns between clean energy stocks and the two cryptocurrency
groups.
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Table 2: DCCs between clean energy indices and cryptocurrencies

SPGTCED ECO GRNBIO GRNFUEL GRNREG GRNGEO GRNSOLAR GRNWIND
BTC 0.1584 0.1188 0.1375 0.0990 0.1479 0.0855 0.1084 0.1161
ETC 0.1313 0.1080 0.0848 0.0709 0.1252 0.0714 0.0957 0.0864
BCH 0.1346 0.1024 0.0921 0.0795 0.1252 0.0764 0.0787 0.0869
LTC 0.1483 0.1327 0.1218 0.0983 0.1554 0.0634 0.1120 0.1168
ETH 0.1509 0.1310 0.1236 0.1102 0.1414 0.0657 0.1006 0.1211
ADA 0.1616 0.1397 0.1354 0.1064 0.1571 0.1107 0.1326 0.0786
XRP 0.1354 0.1520 0.1200 0.1333 0.1271 0.0582 0.1036 0.0688
XLM 0.1757 0.1622 0.1601 0.1109 0.1711 0.0976 0.1391 0.0955
MIOTA 0.1551 0.1438 0.1459 0.1095 0.1549 0.1206 0.1398 0.0901
NANO 0.1594 0.1626 0.1000 0.1154 0.1521 0.0697 0.1336 0.0974

4.1.2. Return analysis

Table 3 summarises the results of the hedge and safe haven property of clean energy indices
in extreme bearish cryptocurrency market conditions. All the hedge ratios (θ0) in Table 3 are
significantly positive, which confirms that none of the clean energy indices could be a direct hedge
for either types of cryptocurrencies during the studied period. The θ1 for most of the panels are
negative and some of which are significant, which indicates that clean energy indices could be weak
or even strong safe havens for cryptocurrencies in the 10% quantile during the period, with very
few exceptions.In terms of θ2 and θ3, the results are more spotty. It suggests that clean energy
could also be a weak safe haven for cryptocurrency in 5% and 1% quantiles, but it depended very
much on which clean energy and cryptocurrency were used.

Reversing the relationship in Table 4, we see that the results for θs are not uniformed. Cryp-
tocurrency, regardless of types, seems to be a weak safe haven for GRNSOLAR in the 10% quantile
as all θ1 for GRNSOLAR are insignificantly negative in all panels. Most of the cryptocurrecies
were weak havens for GRNGEO at 10% except for BTC which was a strong safe haven, and XRP,
MIOTA, and NANO which were not safe havens for GRNGEO in the 10% quantile at all. For θ2

and θ3, we can only see few of cryptocurrencies were safe havens for clean energy stocks. Clearly,
the results are even more spotty than the reverse, and we can not clearly say that cryptocurrencies
are safe havens for clean energy stocks in general and we cannot distinguish the difference between
types.

Overall, we find that clean energy can be generally viewed as a safe haven for the returns of
either black or green cryptocurrencies in the 10% quantiles; clean energy can be a safe haven for
them in the 5% and 1% quantiles as well, but it really depends on the selection of underlying assets.
Cryptocurrencies are not evident as safe havens for clean energy. Given the ecological footprint of
dirty cryptocurrencies that is perhaps a comforting finding. The portfolio suggestion that arises
from this is that investors with significant exposure to (in particular, from an ecological perspective,
dirty) cryptocurrencies can
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Table 3: Results of hedge and safe haven analysis of clean energy indices for daily cryptocurrency extreme returns

Hedge (θ0) 10% quantile (θ1) 5% quantile (θ2) 1% quantile (θ3)
Panel A :SPGTCED
BTC 0.1586*** -0.0053 0.0085 -0.0101
ETC 0.1312*** -0.0034 0.0062 0.0144
BCH 0.1347*** -0.0030 0.0043 0.0012
LTC 0.1480*** -0.0030 0.0051 0.0041
ETH 0.1511*** -0.0097 0.0116 0.0133
ADA 0.1621*** -0.0027 -0.0075 0.0108
XRP 0.1372*** -0.0155 -0.0051 -0.0051
XLM 0.1758*** 0.0001 -0.0031 0.0005
MIOTA 0.1556*** -0.0156** 0.0189** 0.0213
NANO 0.1597*** -0.0133** 0.0158** 0.0190
Panel B: ECO
BTC 0.1195*** -0.0162 0.0210 -0.0210
ETC 0.1077*** -0.0016 0.0041 0.0196
BCH 0.1031*** -0.0002 -0.0135 0.0028
LTC 0.1330*** 0.0010 -0.0064 -0.0057
ETH 0.1317*** -0.0049 -0.0072 0.0097
ADA 0.1406*** -0.0022 -0.0156 0.0121
XRP 0.1528*** -0.0154 0.0093 0.0224
XLM 0.1627*** -0.0049 -0.0006 0.0076
MIOTA 0.1451*** -0.0197 0.0143 -0.0051
NANO 0.1636*** -0.01445* 0.0082 0.0082
Panel C: GRNBIO
BTC 0.1376*** -0.0103 0.0209 -0.0125
ETC 0.0859*** -0.0179 0.0127 0.0042
BCH 0.0936*** -0.0155 -0.0047 0.0362
LTC 0.1215*** 0.0011 0.0014 0.0105
ETH 0.1241*** -0.0120 0.0062 0.0390
ADA 0.1355*** -0.0019 -0.0048 0.0328
XRP 0.1210*** -0.0215 0.0134 0.0415
XLM 0.1598*** -0.0119 0.0362 -0.0354
MIOTA 0.1475*** -0.0409*** 0.0493** 0.0015
NANO 0.1010*** -0.0268** 0.0290* 0.0233
Panel D: GRNFUEL
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Table 3 continued from previous page
BTC 0.0993*** -0.0088 0.0058 0.0294
ETC 0.0726*** -0.0245** 0.0211 -0.0381
BCH 0.0794*** -0.0033 0.0083 0.0076
LTC 0.0976*** 0.0025 0.0110 -0.0090
ETH 0.1104*** -0.0027 -0.0008 0.0107
ADA 0.1073*** -0.0038 -0.0121 0.0126
XRP 0.1336*** -0.0055 0.0111 -0.0249
XLM 0.1118*** -0.0049 -0.0096 0.0104
MIOTA 0.1098*** -0.0223** 0.0388*** 0.0011
NANO 0.11545*** -0.0017 0.0022 -0.0003
Panel E: GRNREG
BTC 0.1488*** -0.0210 0.0248 -0.0025
ETC 0.1258*** -0.0119 0.0045 0.0373
BCH 0.1273*** -0.0267 0.0074 0.0208
LTC 0.1562*** -0.0062 -0.0030 -0.0020
ETH 0.1434*** -0.0323* 0.0137 0.0580
ADA 0.1586*** -0.0097 -0.0119 0.0140
MIOTA 0.1562*** -0.0300** 0.0321* 0.0088
XRP 0.1297*** -0.0243* -0.0032 -0.0010
XLM 0.1717*** -0.0066 -0.0041 0.0182
NANO 0.1537*** -0.0287*** 0.0182 0.0302
Panel F: GRNGEO
BTC 0.0856*** -0.0040 0.0041 0.0097
ETC 0.0714*** -0.0000 0.0000 0.0000
BCH 0.0764*** -0.0017 -0.0005 0.0169***
LTC 0.0632*** -0.0010 0.0060 0.0049
ETH 0.0658*** -0.0058 -0.0011 0.0488***
ADA 0.1104*** 0.0016 0.0022 0.0030
XRP 0.0582*** -0.0013 0.0014 0.0090
XLM 0.0972*** 0.0057 -0.0025 -0.0013
MIOTA 0.1205*** -0.0023 0.0054** 0.0049
NANO 0.0700*** -0.0118*** 0.0142*** 0.0155*
Panel G: GRNSOLAR
BTC 0.1091*** -0.0113 0.0119 -0.0174
ETC 0.0982*** -0.0318*** 0.0143 -0.0052
BCH 0.0806*** -0.0149 -0.0142 0.0337
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Table 3 continued from previous page
LTC 0.1125*** -0.0008 -0.0041 -0.0124
ETH 0.1016*** -0.0102 -0.0031 0.0221
ADA 0.1329*** 0.0027 -0.0132 0.0116
XRP 0.1056*** -0.0309* 0.0154 0.0332
XLM 0.1391*** -0.0065 0.0117 0.0042
MIOTA 0.1412*** -0.0258*** 0.0241* 0.0002
NANO 0.1351*** -0.0226** 0.0122 0.0129
Panel I: GRNWIND
BTC 0.1169*** -0.0139 0.0085 0.0225
ETC 0.0864*** -0.0006 -0.0089 0.0498**
BCH 0.0872*** -0.0043 0.0022 0.0026
LTC 0.1167*** -0.0029 0.0090 -0.0044
ETH 0.1214*** -0.0096** 0.0068 0.0325***
ADA 0.0796*** -0.0096 -0.0040 0.0116
XRP 0.0693*** -0.0062 0.0051 -0.0173
XLM 0.0962*** -0.0054 -0.0065 0.0162
MIOTA 0.0908*** -0.0182** 0.0224** 0.0032
NANO 0.0982*** -0.0147* 0.0117 0.0066

Notes:
1. Equation 5 was used. Table shows the relationship between each clean energy index (each
panel) and various cryptocurrencies;
2. ***, ** and * denote the rejections of the null hypothesis at the significance level of 1%, 5%
and 10%, respectively.

Table 4: Results of hedge and safe haven analysis of cryptocurrencies for daily clean energy extreme returns

Hedge (θ0) 10% quantile
(θ1)

5% quantile (θ2) 1% quantile (θ3)

Panel A: BTC
SPGTCED 0.1542*** 0.0241** 0.0318*** 0.0148
ECO 0.1144*** 0.0256* 0.0170 0.0855**
GRNBIO 0.1329*** 0.0004 0.0656*** 0.1128***
GRNFUEL 0.0963*** 0.0199* 0.0038 0.0494*
GRNGEO 0.0854*** -0.0101* 0.0215** 0.0078
GRNREG 0.1404*** 0.0481*** 0.0361 0.0844*
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Table 4 continued from previous page
GRNSOLAR 0.1061*** -0.0152 0.0598** 0.0775*
GRNWIND 0.1143*** -0.0028 0.0313** 0.0472**
Panel B: ETC
SPGTCED 0.1303*** 0.0080 0.0000 0.0182
ECO 0.1083*** -0.0195** 0.0202* 0.0562***
GRNBIO 0.0801*** 0.0094 0.034 0.1905***
GRNFUEL 0.0701*** 0.0147 -0.0093 -0.0240
GRNGEO 0.0714*** -0.0000 0.0000 0.0000
GRNREG 0.1238*** 0.0104 -0.0084 0.0816***
GRNSOLAR 0.0950*** -0.0126 0.0244 0.0650
GRNWIND 0.0855*** 0.0044 0.0100 -0.0040
Panel C: BCH
SPGTCED 0.1325*** 0.0106* 0.01882** 0.0067
ECO 0.0986*** 0.0249** 0.0133 0.0582*
GRNBIO 0.0863*** 0.0066 0.0707** 0.1545***
GRNFUEL 0.0764*** 0.0284** 0.0011 0.0166
GRNGEO 0.0754*** 0.0021 0.0155*** 0.0011
GRNREG 0.1189*** 0.0431*** 0.0206 0.0832**
GRNSOLAR 0.0760*** -0.0046 0.0483* 0.0686*
GRNWIND 0.0861*** 0.0027 0.0068 0.0138
Panel D: LTC
SPGTCED 0.14746*** 0.0017 0.0076 0.02847***
ECO 0.1311*** 0.0076 0.0054 0.0564***
GRNBIO 0.1180*** 0.0057 0.0302* 0.1696***
GRNFUEL 0.0977*** 0.0081 -0.0142 0.0428**
GRNGEO 0.0632*** -0.0040 0.0094 0.0125
GRNREG 0.1532*** 0.0118 0.0056 0.06754***
GRNSOLAR 0.1112*** -0.0114 0.0296** 0.0460**
GRNWIND 0.1160*** -0.0004 0.0150** 0.0152
Panel E: ETH
SPGTCED 0.1484*** 0.0089 0.0268** 0.0236
ECO 0.1281*** 0.0183 -0.0005 0.1023***
GRNBIO 0.1195*** 0.0090 0.0384* 0.1210***
GRNFUEL 0.1089*** 0.0139* -0.0022 -0.0067
GRNGEO 0.0653*** -0.0076 0.0220*** 0.0024
GRNREG 0.1353*** 0.0344* 0.02982 0.1129**
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Table 4 continued from previous page
GRNSOLAR 0.09845*** -0.0063 0.0372* 0.0878**
GRNWIND 0.1203*** -0.0007 0.0117** 0.0281***
Panel F: ADA
SPGTCED 0.1605*** -0.0020 0.0173** 0.0354**
ECO 0.1378*** 0.0117 -0.0020 0.0831***
GRNBIO 0.1320*** 0.0063 0.0250 0.1419***
GRNFUEL 0.1056*** 0.0147* -0.0154 0.0104
GRNGEO 0.1106*** -0.0090 0.0188** 0.0038
GRNREG 0.1546*** 0.0074 0.0199 0.07302***
GRNSOLAR 0.1315*** -0.0059 0.0194* 0.0621***
GRNWIND 0.0767*** 0.0007 0.0244* 0.0524**
Panel G: MIOTA
SPGTCED 0.1531*** 0.008612 0.0201** 0.013279
ECO 0.1402*** 0.0266** 0.0046 0.0678**
GRNBIO 0.1412*** 0.0034 0.0583*** 0.1349***
GRNFUEL 0.1068*** 0.0244** 0.0004 0.0194
GRNGEO 0.1200*** 0.0017 0.0099*** -0.0002
GRNREG 0.1504*** 0.0316** 0.0153 0.0601*
GRNSOLAR 0.1389*** -0.0091 0.0264* 0.0435*
GRNWIND 0.0882*** 0.0040 0.02050* 0.0495***
Panel H: XRP
SPGTCED 0.1331*** -0.0090 0.0518*** 0.0541*
ECO 0.1465*** 0.0316* 0.021052 0.1191***
GRNBIO 0.1157*** 0.0109*** 0.0340* 0.1360***
GRNFUEL 0.1311*** 0.0291* -0.0261 0.0657*
GRNGEO 0.0577*** 0.0013 0.0078 0.0020***
GRNREG 0.1237*** 0.0103 0.0269 0.0929***
GRNSOLAR 0.1007*** -0.0086 0.0539** 0.0951**
GRNWIND 0.0677*** 0.0003 0.0153** 0.0218*
Panel I: XLM
SPGTCED 0.1740*** 0.0023 0.0227*** 0.0213**
ECO 0.1580*** 0.0157 0.0391** 0.0656**
GRNBIO 0.1552*** 0.0123 0.0369* 0.0172***
GRNFUEL 0.1081*** 0.0282*** -0.0008 0.0053
GRNGEO 0.0976*** -0.0045 0.0075 0.0066
GRNREG 0.1659*** 0.0300** 0.0261 0.0762***
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Table 4 continued from previous page
GRNSOLAR 0.1365*** -0.0074 0.0522*** 0.0640**
GRNWIND 0.0939*** 0.0072 0.0104 0.0273**
Panel J: NANO
SPGTCED 0.1581*** 0.0059 0.0078 0.0289**
ECO 0.1597*** 0.0153* 0.0170 0.0458**
GRNBIO 0.0972*** 0.0037 0.0187 0.1401***
GRNFUEL 0.1150*** 0.0040*** 0.0005 -0.0023
GRNGEO 0.0694*** 0.0002 0.0056 0.0009
GRNREG 0.1474*** 0.0147 0.0433*** 0.0947***
GRNSOLAR 0.1318*** -0.0070 0.0366*** 0.0570**
GRNWIND 0.0960*** -0.0017 0.0290*** 0.0064

Notes:
1. Modified Equation 5 was used. Table shows the relationship between each cryptocurrency
index (each panel) and various clean energy indices;
2. ***, ** and * denote the rejections of the null hypothesis at the significance level of 1%, 5%
and 10%, respectively.

4.1.3. Uncertainty analysis

Table 5 summarise the results of the hedge and safe haven property of clean energy indices for
cryptocurrencies in periods of increased crypto market uncertainty. All hedge coefficients (θ0) in
Table 5 are significantly positive, which confirms that clean energy indices can not be a direct hedge
for either types of cryptocurrencies during the times of increased market uncertainty. Although the
results of θ1 coefficients are spotty, most of them are positive, which indicates that clean energy
indices are not safe havens for either types of cryptocurrency during high market uncertainty (90%
threshold). For θ2, most of them for dirty cryptocurrencies are negative and some of which are
significant, which suggests that most of the clean energy indices are weak or strong safe havens for
dirty cryptocurrencies on the 95% threshold of volatility. Exceptions are GRNFUEL which is not
a safe haven for BTC and ETH, GRNREG which is not a safe haven for LTC, GRNGEO which is
not a safe haven for ETC, and GRNWIND which is not a safe haven for ETH. Finally, regarding
θ3, we can see that coefficients for most of the panels are positive, except for some of which in Panel
E and F, which indicates that more than half of the clean energy indices are not safe havens for
either dirty or green cryptocurrencies during extreme uncertainty (99% threshold). Exceptions are
GRNREG which is a weak safe haven for NANO on the 99 99% threshold; and GRNGEO which is
a weak safe haven for green cryptocurrencies on the 99% threshold.

Table 6 presents the results of the hedge and safe haven property of dirty and clean cryp-
tocurrencies in periods of increased clean energy market uncertainty. We found that none of the
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cryptocurrencies was a safe haven on the 90% threshold. Interestingly, we noticed that some of the
cryptocurrencies were strong safe havens for GRNFUEL on the 95% threshold of volatility, includ-
ing ETC, BCH, ETH, ADA, XLM. ETC was also a weak haven for ECO and GRNWIND. LTC was
a a weak safe haven for GRNGEO and NANO was for GRNWIND on the 99% threshold. BTC,
MIOTA, and XRP were not safe havens for clean energy at all. Similar to the previous analysis on
returns, these spotty and inconsistent results suggest that cryptocurrencies in regardless types are
not a appropriate safe haven choice for clean energy stocks.

Overall, we conclude that clean energy is more likely to be a safe haven for dirty cryptocurrencies
than clean cryptocurrencies in the periods of increased market uncertainty, depending on the choice
of underlying assets while the reverse is not the case, cryptocurrencies not showing consistent safe
haven properties for clean energy stocks.

Table 5: Results of hedge and safe haven analysis of clean energy indices in periods of extreme dirty and clean
cryptocurrency volatility proxied for market uncertainty

Hedge (θ0) 90% threshold (θ1) 95% threshold (θ2) 99% threshold (θ3)
Panel A: SPGTCED
BTC 0.1553*** 0.0191* -0.0184 0.0898***
ETC 0.1285*** 0.0197 -0.0286*** 0.0976***
BCH 0.1450*** 0.0097* -0.0138* 0.0775***
LTC 0.1477*** 0.0168*** -0.0233*** 0.0846***
ETH 0.1472*** 0.0136* -0.0134 0.1340***
ADA 0.1599*** -0.0050 0.0181** 0.0172
MIOTA 0.1508*** 0.0151** 0.0107 0.0139
XRP 0.1337*** -0.0109 0.0356* 0.0370
XLM 0.1734*** 0.0010 0.0137** 0.0138
NANO 0.1580*** -0.0001 0.0359*** 0.0214*
Panel B: ECO
BTC 0.1162*** 0.0147 -0.0242 0.2111***
ETC 0.1055*** 0.0277*** -0.0356*** 0.1386***
BCH 0.1019*** 0.0102 -0.0383** 0.1694***
LTC 0.1308*** 0.0065 -0.0136 0.1138***
ETH 0.1301*** -0.0000 -0.0260 0.2012***
ADA 0.1382*** -0.0033 0.0289** 0.0542**
MIOTA 0.1383*** 0.0260** 0.0312* 0.0630**
XRP 0.1457*** 0.0174 0.0664** 0.1112***
XLM 0.1576*** 0.0168 0.0399** 0.0731**
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Table 5 continued from previous page
NANO 0.1607*** 0.0103 0.0357*** 0.0584***
Panel C: GRNBIO
BTC 0.1336*** 0.0251 -0.0262 0.2142***
ETC 0.0790*** 0.0435*** -0.0151 0.2459***
BCH 0.0875*** 0.0234 -0.0345 0.2558***
LTC 0.1158*** 0.0282** -0.0048 0.2173***
ETH 0.1209*** 0.0229 -0.0162 0.1997***
ADA 0.1329 0.0056 0.0282* 0.0461*
MIOTA 0.1401*** 0.0350** 0.0273 0.0579*
XRP 0.1155*** 0.0074 0.0452** 0.0883***
XLM 0.1558*** 0.0074 0.0702*** 0.0646*
NANO 0.0962*** 0.0033 0.0517*** 0.0655**
Panel D: GRNFUEL
BTC 0.0947*** 0.0111 0.0172 0.2087***
ETC 0.0701*** -0.0079 -0.0072 0.1828***
BCH 0.0768*** 0.0059 -0.0072 0.1959***
LTC 0.0965*** 0.0045 -0.0135 0.1549***
ETH 0.1087*** -0.0070 0.0050 0.1346***
ADA 0.1065*** -0.0191** 0.0265** 0.0471**
MIOTA 0.1041*** 0.0274*** 0.0284** 0.0967***
XRP 0.1272*** 0.0142 0.0740*** 0.1045***
XLM 0.1096*** -0.0020 0.0251* 0.0585***
NANO 0.1159*** 0.0029** 0.0050*** 0.0092***
Panel E: GRNREG
BTC 0.1441*** 0.0347* -0.0169 0.2361***
ETC 0.1238*** 0.0120 -0.0215* 0.2001***
BCH 0.1224*** 0.0108 -0.0186 0.2355***
LTC 0.1536*** 0.0076 0.0041 0.1499***
ETH 0.1385*** 0.0159 -0.0102 0.2786***
ADA 0.1577*** -0.0056 0.0290* 0.0205
MIOTA 0.1532*** 0.0178 0.0117 0.0110
XRP 0.1274*** -0.0224 0.0317 0.0287
XLM 0.1689*** 0.0101 0.0245 0.0061
NANO 0.1494*** 0.0062 0.0507*** -0.0007
Panel F: GRNGEO
BTC 0.0867*** 0.0033 -0.0126 0.0955***
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Table 5 continued from previous page
ETC 0.0722*** 0.0000 0.0000 0.0000***
BCH 0.0754*** 0.0026 -0.0011 0.0750***
LTC 0.0643*** 0.0030 -0.0100* 0.0518***
ETH 0.0664*** 0.0025 -0.0108 0.1088***
ADA 0.1100*** 0.0202*** 0.0036 -0.0095
MIOTA 0.1218*** 0.0077*** -0.0001 -0.0020
XRP 0.0589*** 0.0051 0.0034 -0.0108
XLM 0.0977*** 0.0105*** 0.0032 -0.0154
NANO 0.0708*** -0.0021 0.0258*** -0.0207***
Panel G: GRNSOLAR
BTC 0.1063*** 0.0185 -0.0380 0.2462***
ETC 0.0943*** 0.0061 -0.0296** 0.2133***
BCH 0.0798*** 0.0045 -0.0522 0.2300***
LTC 0.1097*** 0.0097 -0.0139 0.1446***
ETH 0.0996*** 0.0023 -0.0316 0.2345***
ADA 0.1304*** 0.0103 0.0269** 0.0316*
MIOTA 0.1370*** 0.0134 0.0160 0.0360
XRP 0.1003*** 0.0038 0.0566** 0.0799*
XLM 0.1334*** 0.0224* 0.0477*** 0.0457
NANO 0.1327*** 0.0076 0.0400*** 0.0426*
Panel I: GRNWIND
BTC 0.1164*** 0.0031 -0.0075 0.2458***
ETC 0.0862*** 0.0094 -0.0146 0.1841***
BCH 0.0859*** 0.0007 -0.0049 0.1095***
LTC 0.1176*** 0.0087* -0.0062 0.1220***
ETH 0.1213*** 0.0073** 0.0009 0.1295***
ADA 0.0808*** -0.0048 0.0211 0.0266
MIOTA 0.0909*** 0.0064 0.0157 0.0096
XRP 0.0685*** -0.0019 0.0063 0.0207*
XLM 0.0961*** 0.0008 0.0044 0.0090
NANO 0.0955*** 0.0011 0.0339*** 0.0010

Notes:
1. Equation 6 was used;
2. ***, ** and * denote the rejections of the null hypothesis at the significance level of 1%, 5% and
10%, respectively.
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Table 6: Results of hedge and safe haven analysis of cryptocurrencies in periods of extreme clean energy market
uncertainty

Hedge (θ0) 90% threshold
(θ1)

95% threshold
(θ2)

99% threshold
(θ3)

Panel A: BTC
SPGTCED 0.1484*** 0.0971*** 0.0006 0.0152
ECO 0.1034*** 0.1329*** 0.0239 0.0748**
GRNBIO 0.1179*** 0.1574*** 0.0629*** 0.0489
GRNFUEL 0.0901*** 0.0663*** 0.0184 0.1254***
GRNGEO 0.0824*** 0.0229*** 0.0123 0.0239*
GRNREG 0.1276*** 0.1709*** 0.0351 0.1315***
GRNSOLAR 0.0930*** 0.0902*** 0.1067*** 0.0832*
GRNWIND 0.1098*** 0.0278*** 0.0590*** 0.0511**
Panel B: ETC
SPGTCED 0.1294*** 0.0106** 0.0112 0.0256**
ECO 0.1045*** 0.0300*** 0.0100 -0.0116
GRNBIO 0.0649*** 0.1390*** 0.0908*** 0.1209***
GRNFUEL 0.0665*** 0.0520*** -0.0352** 0.0888***
GRNGEO 0.0714*** 0.0000 0.0000*** 0.0000***
GRNREG 0.1206*** 0.0303*** 0.0034 0.1364***
GRNSOLAR 0.0875*** 0.0277*** 0.0825*** 0.1178***
GRNWIND 0.0837*** 0.0120 0.0365*** -0.0313
Panel C: BCH
SPGTCED 0.1294*** 0.0423*** 0.0112 0.0351***
ECO 0.0896*** 0.1179*** 0.0090 0.0428
GRNBIO 0.0677*** 0.2037*** 0.0621*** 0.0713*
GRNFUEL 0.0722*** 0.0845*** -0.0409** 0.0855***
GRNGEO 0.0741*** 0.0113*** 0.0192*** 0.0211***
GRNREG 0.1085*** 0.1224*** 0.0590*** 0.12945***
GRNSOLAR 0.0637*** 0.1033*** 0.0781*** 0.0602
GRNWIND 0.0849*** 0.0050 0.0282*** 0.0024
Panel D: LTC
SPGTCED 0.1459*** 0.0113*** 0.0187*** 0.0312***
ECO 0.1246*** 0.06745*** 0.0144 0.0564***
GRNBIO 0.1056*** 0.1057*** 0.0827*** 0.1322***
GRNFUEL 0.0946*** 0.0232*** 0.0064 0.0996***
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Table 6 continued from previous page
GRNGEO 0.0611*** 0.0162*** 0.0139** -0.0014
GRNREG 0.1471*** 0.0474*** 0.0418*** 0.1378***
GRNSOLAR 0.1044*** 0.0268*** 0.0816*** 0.0802***
GRNWIND 0.1143*** 0.0130*** 0.0237*** 0.0015
Panel E: ETH
SPGTCED 0.1440*** 0.0472*** 0.0244** 0.0862***
ECO 0.1185*** 0.1023*** 0.0241 0.0927***
GRNBIO 0.1058*** 0.1408*** 0.0557*** 0.0746**
GRNFUEL 0.10648*** 0.0420*** -0.0262** 0.0746***
GRNGEO 0.0632*** 0.0110* 0.0198** 0.0367***
GRNREG 0.1233*** 0.1181*** 0.0858*** 0.1829***
GRNSOLAR 0.0885*** 0.0454*** 0.1274*** 0.1014***
GRNWIND 0.1184*** 0.0157*** 0.0103* 0.0662***
Panel F: ADA
SPGTCED 0.1572*** 0.0218*** 0.0224*** 0.0996***
ECO 0.1310*** 0.0649*** 0.0246** 0.0902***
GRNBIO 0.1209*** 0.0994*** 0.0639*** 0.1181***
GRNFUEL 0.1041*** 0.0284*** -0.0230* 0.0580***
GRNGEO 0.1081*** 0.0061 0.0360*** 0.0125
GRNREG 0.1476*** 0.0441*** 0.0693*** 0.1518***
GRNSOLAR 0.1252*** 0.0147** 0.0947*** 0.0997***
GRNWIND 0.0705*** 0.0330*** 0.0664*** 0.1344***
Panel G: MIOTA
SPGTCED 0.1499*** 0.0349*** 0.0183** 0.0741***
ECO 0.1320*** 0.1042*** 0.0112 0.0680**
GRNBIO 0.1262*** 0.1621*** 0.0530*** 0.0728**
GRNFUEL 0.1034*** 0.0443*** 0.0091 0.11048***
GRNGEO 0.1194*** 0.0064*** 0.0102*** 0.0095**
GRNREG 0.1423*** 0.0813*** 0.0586*** 0.1382***
GRNSOLAR 0.1318*** 0.0395*** 0.0663*** 0.0610***
GRNWIND 0.0826*** 0.0296*** 0.0700*** 0.0987***
Panel H: XRP
SPGTCED 0.1256*** 0.0709*** 0.0198 0.1580***
ECO 0.1363*** 0.1293*** 0.0287 0.1164***
GRNBIO 0.10245*** 0.1356*** 0.0581*** 0.0858***
GRNFUEL 0.1250*** 0.0443*** 0.0384* 0.18847***
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Table 6 continued from previous page
GRNGEO 0.0568*** 0.0069** 0.0127*** 0.0141**
GRNREG 0.1147*** 0.0672*** 0.0749*** 0.1734***
GRNSOLAR 0.0894*** 0.0647*** 0.12545*** 0.1266***
GRNWIND 0.0654*** 0.0160*** 0.0309*** 0.0239**
Panel I: XLM
SPGTCED 0.1702*** 0.0420*** 0.0150*** 0.0437***
ECO 0.1479*** 0.1262*** 0.0207 0.0520**
GRNBIO 0.1422*** 0.1242*** 0.0795*** 0.1346***
GRNFUEL 0.1049*** 0.0720*** -0.0295** 0.0315
GRNGEO 0.0957*** 0.0088** 0.0174*** 0.0108
GRNREG 0.1562*** 0.1181*** 0.0364** 0.1066***
GRNSOLAR 0.1263*** 0.0708*** 0.0920*** 0.0951***
GRNWIND 0.0903*** 0.0276*** 0.0348*** 0.0591***
Panel J: NANO
SPGTCED 0.1567*** 0.0100** 0.0252*** 0.0350***
ECO 0.1535*** 0.0827*** 0.0051 0.0495***
GRNBIO 0.0858*** 0.1009*** 0.0572*** 0.1079***
GRNFUEL 0.1143*** 0.0093*** 0.0010 0.0081***
GRNGEO 0.0690*** -0.0039 0.0187*** 0.0130
GRNREG 0.1381*** 0.0969*** 0.0480*** 0.1693***
GRNSOLAR 0.1242*** 0.0501*** 0.0707*** 0.0725***
GRNWIND 0.0940*** 0.0139* 0.0450*** -0.0255

Notes:
1. Modified Equation 6 was used;
2. ***, ** and * denote the rejections of the null hypothesis at the significance level of 1%, 5% and
10%, respectively.

4.2. Spillover effects

4.2.1. Return spillovers

We used an optimal lag length of 1 selected by the Akaike Information Criterion (AIC) for
the VAR model to calculate the TS, DS, NS for the return series. Following Saeed et al. [2021],
Aharon et al. [2021], Zeng et al. [2020], Diebold and Yilmaz [2012], and many other studies, we set
a 200-day rolling window size and a 10-day ahead forecast horizon.

As shown in Table 7, the average dynamic total return connectedness from January 2018 to
September 2021 was 63.25%, which is about medium-high level. From Figure 1, we can observe
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that there was a notable increase in total connectedness of around 25% in the April of 2020,
which can be explained by the increased correlations between assets at that time from DCCs plots
(Appendix A). However, if we dig into the total connectedness table, we can see that the the
average total spillovers between either of the cryptocurrency markets and clean energy markets
were relatively low during the period, despite the fact that SPGTCED and ECO were the two
largest spillover transmitters (101.96% and 101.86%). The FROM connectedness between clean
energy indices and cryptocurrency indices was much lower than that between clean energy and
general stock markets (SP&500), and were at the same level of that between clean energy and
gold. The TO connectedness shows that cryptocurrency market transmitted more information
to gold than to clean energy markets on average. Gold market was the most isolated as it was
the smallest spillover receiver (28.65%)/transmitter (14.14%), followed by the dirty cryptocurrency
(50.01%/37.9%) and clean cryptocurrency (48.64%/41.16%).

Table 7: Average dynamic total return connectedness

GOLD SP500 SPGTCED ECO GRNBIO GRNFUEL GRNGEO GRNREG GRNSOLAR GRNWIND DCRYPT CCRYPT FROM
OTHERS

GOLD 71.35 2.73 3.14 2.67 3.25 1.63 1.49 3.78 2.39 3.08 3 1.49 28.65
SP500 1.14 25.51 10.41 13.21 8.32 5.15 5.06 11.53 12.25 3.83 1.96 1.66 74.49
SPGTCED 1.06 9.58 21.83 15.00 7.11 6.51 4.79 13.06 11.14 7.43 1.27 1.23 78.17
ECO 0.81 12.16 14.56 21.61 7.97 8.84 4.74 9.72 13.84 3.31 1.17 1.28 78.39
GRNBIO 1.62 10.53 10.34 11.7 33.97 4.96 4.03 7.17 8.63 3.29 2.06 1.7 66.03
GRNFUEL 0.88 7.92 10.44 14.52 5.51 37.41 2.47 7.32 7.58 3.55 1.18 1.23 62.59
GRNGEO 1.5 8.02 9.24 8.52 5.55 3.03 43.25 8.22 6.05 3.3 1.84 1.48 56.75
GRNREG 1.41 10.64 13.7 10.29 5.24 4.91 4.48 23.11 11.72 11.54 1.68 1.29 76.89
GRNSOLAR 1.01 12.51 12.29 15.34 6.7 4.98 4.02 12.65 24.26 3.27 1.58 1.4 75.74
GRNWIND 1.48 6.18 13.04 6.07 3.71 3.82 2.73 18.63 4.92 37.33 1.2 0.88 62.67
DCRYPT 2.03 2.93 2.49 1.98 2.78 1.5 1.66 3.27 2.39 1.44 49.99 27.53 50.01
CCRYPT 1.19 2.73 2.33 2.57 2.78 2.01 1.25 2.55 2.32 0.9 28.02 51.36 48.64
TO OTHERS 14.14 85.92 101.96 101.86 58.92 47.33 36.72 97.9 83.22 44.93 44.96 41.16 759.03
Inc. OWN 85.49 111.42 123.79 123.47 92.89 84.75 79.97 121.01 107.47 82.26 94.95 92.53 TOTAL
NET -14.51 11.42 23.79 23.47 -7.11 -15.25 -20.03 21.01 7.47 -17.74 -5.05 -7.47 63.25

Figure 1: Dynamic total return connectedness
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Figure 2 depicts the dynamic directional return spillovers received by one market from other
markets over time. Clearly, S&P500 and most of the clean energy markets heavily affected by other
markets as they continued receiving the highest spillover effects during the whole period. Clean
energy markets were greater spillover receivers than cryptocurrency markets, while gold was the
smallest receiver at both the beginning and the end. All market received much more spillovers from
other markets in 2020 than in other periods.

Figure 2: Dynamic directional return connectedness FROM others

Figure 3 presents the dynamic directional return spillovers of one market transmitted to other
markets. General clean energy indices such as SPGTCED and ECO had higher spillover effects to
others than most of the other sub-sector indices. S&P500 had relatively high spillover effects to
others until the early 2021. Dirty cryptocurrency conveyed slightly higher spillover effects to others
than clean cryptocurrency and gold. Gold, similar to previous results, had the least spillover effect
to others at all time.
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Figure 3: Dynamic directional return connectedness TO others

If look at the net spillovers (Figure 4), we can easily tell that both of the gold, dirty and clean
cryptocurrency markets were spillover receivers during the whole sample period. General market
(s&p500) had received much more spillovers from other markets since 2021. More interestingly,
the role of clean energy indices played in terms of spillovers varied from sectors to sectors. Half
of the clean energy indices were spillover transmitter in the whole period, including SPGTCED,
ECO, GRNREG, and GRNSOLAR, while GRNFUEL, GRNGEO, and GRNWIND were spillover
receivers. GRNBIO switched from receivers to transmitters in the April of 2020 and then switched
back from 2021 onward.
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Figure 4: Total net return connectedness

Figure 5 and Figure 6 are the net pairwise directional return connectedness for dirty and green
cryptocurrency indices, respectively. The net spillovers from dirty cryptocurrency to clean cryp-
tocurrency was negative at the beginning, and turned positive from the mid of 2019, which means
that dirty cryptocurrency has regained the market dominance from clean cryptocurrency. Gener-
ally, both CCRYPT and DCRYPT were spillover receivers of the general stock market and most of
the clean energy markets. Both DCRYPT and CCRYPT were transmitters for gold.
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Figure 5: Net pairwise directional return connectedness for DCRYPT

Figure 6: Net pairwise directional return connectedness for CCRYPT
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4.2.2. Volatility spillovers

The volatility series were estimated using standard GARCH(1,1) model. We chose an optimal
lag order of 4 based on the AIC and same other settings to calculate the TS, DS, and NS for the
volatility series. As recorded in Table 8, the average dynamic total connectedness of volatilities
from January 2018 to September 2021 was 64.12%, which is slightly higher than that of returns.
Figure 7 presents the time-varing dynamic total volatility spillovers among different markets. It
can observed that there was a even sharper increase in total connectedness between volatilities
than returns in the April of 2020 when the correlations between markets were increased at the
same time (Appendix A). If we zoom in total spillovers table, we can see that the the average
total spillovers between either of the cryptocurrency market and clean energy markets were still
relatively low during the period, but were higher than the that observed in return connectedness.
SPGTCED and ECO were the largest transmitters, followed by GRNREG and S&P500. Half of
the clean energy markets were larger receivers than the general stock market. The cryptocurrency
and the gold market generally involved the least in the volatility transmission. The level of FROM
and TO connectedness between clean energy indices and cryptocurrency indices were slightly higher
than that of return connectedness, but were still slightly lower than that between clean energy and
gold on average. Gold market remained as the most isolated market as it was the smallest spillover
receiver (43.02%) and transmitter (26.09%) again.

Table 8: Average dynamic total volatility connectedness

Gold SP500 SPGTCED ECO GRNBIO GRNFUEL GRNGEO GRNREG GRNSOLAR GRNWIND DCRYPT CCRYPT FROM
OTHERS

GOLD 56.98 4.58 5.88 4.1 4.21 1.88 2.48 5.62 3.68 4.02 2.93 3.63 43.02
SP500 2.82 30.78 10.56 10.2 8.83 4.5 4.54 11.87 6.55 5 2.15 2.21 69.22
SPGTCED 2.5 9.36 23.9 12.67 8.49 4.24 7.12 12.75 8.34 5.85 2.63 2.16 76.1
ECO 2.94 12.51 15.23 21.57 9.53 5.24 5.56 10.13 8.2 4.68 2.36 2.05 78.43
GRNBIO 2.35 10.34 10.29 7.8 32.52 2.5 7.12 8.71 4.94 6.76 3.31 3.34 67.48
GRNFUEL 1.64 7.97 8.99 10.79 4.49 45.92 5.72 4.61 3.31 2.92 2.15 1.5 54.08
GRNGEO 3.94 6.52 10.55 7.21 7.41 2.33 39.23 6.85 5.86 4.3 2.85 2.95 60.77
GRNREG 2.11 11.81 14.14 8.41 6.94 4.82 4.71 24.6 9.5 8.06 2.68 2.22 75.4
GRNSOLAR 2.44 10.76 12.38 11.77 7.77 3.06 3.84 13.7 25.29 4.26 2.8 1.93 74.71
GRNWIND 2.05 4.09 11.15 5.94 5.07 4.38 6.38 14.63 5.4 34.64 3.62 2.64 65.36
DCRYPT 1.99 3.17 4.68 3.66 5.46 1.7 2.29 4.86 4.15 5.52 45.87 16.65 54.13
CCRYPT 1.31 3.05 4.99 4.13 4.89 3.31 2.85 5 3.03 2.84 15.35 49.26 50.74
TO others 26.09 84.17 108.84 86.69 73.09 37.97 52.62 98.72 62.97 54.2 42.8 41.28 769.43
Inc. own 83.07 114.96 132.73 108.25 105.62 83.88 91.85 123.33 88.26 88.85 88.67 90.54 TOTAL
NET -16.93 14.96 32.73 8.25 5.62 -16.12 -8.15 23.33 -11.74 -11.15 -11.33 -9.46 64.12
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Figure 7: Dynamic total volatility connectedness

Figure 8 depicts the dynamic directional volatility spillovers received by one market from other
markets over time. This time, the two major clean energy indices SPGTCED and ECO were the
largest receivers. Most of the other clean energy subsectors shared similar pattern, but not for the
case in GRNFUEL which was more volatile. Clean cryptocurrency received more spillovers than
dirty cryptocurrency before the mid of 2020, but received much less afterwards. All market received
much more spillovers from other markets in 2020 than in other periods.
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Figure 8: Dynamic directional volatility connectedness FROM others

Figure 9 presents the dynamic directional volatility spillovers of one market transmitted to
other markets. S&P500 and some of the clean energy indices had relatively higher spillover effects
to others than the others. Dirty cryptocurrency conveyed slightly higher spillover effects to others
than clean cryptocurrency and gold on average. Gold, similar to previous result, had the least
spillover effects to others at all time. One important feature is that the clean cryptocurrency once
had a extremely large spillover effect to other markets near the end of year 2020.
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Figure 9: Dynamic directional volatility connectedness TO others

The plots of net volatility spillovers show quite a different picture to those of returns (Figure 10).
Gold was no longer a all time receiver as it was also a transmitter before 2020 April. S&P500 and
major clean energy indices such as SPGTCED and ECO still could be considered as transmitters
during the whole sample period. Other clean energy subsectors varied from type to type. They
switched between receiver and transmitter at different time. Dirty cryptocurrency generally could
classified as a receiver after 2020 April. Clean cryptocurrency was a receiver at most of the time,
but it transmitted very large spillovers once in December of 2020.
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Figure 10: Total net volatility connectedness

Figure 11 and Figure 12 are the net pairwise directional volatility connectedness for dirty and
green cryptocurrency indices, respectively. Surprisingly, the net spillovers from dirty to clean cryp-
tocurrency was positive, but became negative following a extreme negative shock at the end of
2020. This tells us that when clean cryptocurrency was experiencing high volatility, the dirty cryp-
tocurrency market got affected. In addition, the net volatility spillover from dirty cryptocurrency
to gold became quite negative from 2020 April to December, which suggests that investments had
been somehow transferred from dirty cryptocurrency to gold market when the former was expe-
riencing high uncertainty. Another interesting pattern is that clean cryptocurrency had extreme
volatility spillover effects to all other market near the end of 2020. Similar to previous findings,
the net spillovers between cryptocurrencies and clean energy are different and there was no unified
pattern among them.
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Figure 11: Net pairwise directional volatility connectedness for DCRYPT

Figure 12: Net pairwise directional volatility connectedness for CCRYPT
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Overall, the return and volatility connectedness between clean energy and general market or
between clean energy subsectors were more pronounced than that between clean energy and cryp-
tocurrencies, which suggests that investor in the market have not really linked the clean energy and
cryptocurrencies together regardless of whether the cryptocurrency is dirty or clean.

5. Robustness check

We further considered using a time-varying parameter VAR model (TVP-VAR) proposed by
Antonakakis et al. [2020] to examine the robustness of previous results of spillover analysis sections.
The TVP-VAR approach is claimed to have advantages over the DY2012 (rolling window VAR)
approach such that it does not require a rolling window size to be biasedly assigned and it avoids
loosing observations as it introduces a time-varing variance-covariance matrix by adopting the
Kalman filter in estimation with forgetting factors assigned (Antonakakis et al. [2020]).

The TVP-VAR model with p lags is defined as the following:

yt = Φtzt−1 + ϵt ϵt | It−1 ∼ N (0,Σt) ,

vec (Φt) = vec (Φt−1 ) + et et | It−1 ∼ N (0, Et) ,
(14)

where yt represents m × 1 vector of endogenous variables, while zt−1 represents pm × 1 vector of
lagged yt from t−p to t−1. ϵt and et are vectors of error terms. It−1 denotes all known information
until t− 1. Σt and Et are time-varying variance-covariance matrices.

Following Antonakakis et al. [2020], we initiated the Kalman filter using the Minnesota prior,
followed by using the benchmark decay factors of (0.99, 0.99) in the estimation step to calculate
the time-varing coefficients and variance-covariance matrices. Finally, the time-varing coefficients
and the time-varing variance-covariance matrices were introduced to the step of generalized forecast
error variance decomposition in the DY2012 approach so that we could calculate the spillover indicies
TS, DSi←j , DSi→j , and NS.

Appendix B.1 and Appendix C.1 list the average dynamic total return and volatility connect-
edness, respectively. Appendix B.1 to Appendix B.6 are plots of dynamic return connectedness
results, while Appendix C.1 to Appendix C.6 are plots of dynamic volatility connectedness results.

By using the TVP-VAR model, we avoided the loss of the first 200 observations, and we showed
that there was a decaying return connectedness from 2018 to 2019 and same for the volatility
connectedness but from 2018 to 2020, which were probably due to the collapse in crypto market
started in the January of 2018. The major differences between the results of using the DY2012 and
TVP-VAR models happened in the period from 2020 April till the year end. To better illustrate
the difference, we dropped the first 200 results of total connectedness obtained using the TVP-VAR
model, and scaled both results obtained by DY2012 and TVP-VAR models to 100 at the start. Figure
13 and 14 compare the dynamic total return and volatility connectedness using VAR and TVP-VAR
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approaches, respectively. Both show a drastic increase in the total spillovers approaching the April
of 2020. However, while using the VAR approach the high level of spillovers lasted for nearly a year
before collapsing at the beginning of 2021, the spillovers calculated using the TVP-VAR model was
decaying after the peak. This is not surprising as the DY2012 approach is more sensitive to outliers
than the TVP-VAR method as the latter is smoothed by a Kalman filter. Overall, both approaches
provide qualitatively similar information and our findings remain robust.

Figure 13: Dynamic total return spillovers using VAR and TVP-VAR
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Figure 14: Dynamic total volatility spillovers using VAR and TVP-VAR

6. Conclusions

Previous studies such as Naeem and Karim [2021] and Pham et al. [2021] suggested that green
investments such as clean energy could be used as diversification or hedge tool for cryptocurrency
investors. However, in this paper, we showed that the time-varing dynamic conditional correlations
between clean energy indices and cryptocurrencies was positive the majority of the time, regardless
of cryptocurrency types, which implies that clean energy indices might not be a direct hedge for
either black and green cryptocurrencies.

Furthermore, we tested the hedge and safe haven property of clean energy indices in spells of
extreme falling crypto markets and extreme crypto market uncertainty and the reverse based on
the framework proposed by Baur and Lucey [2010] and Baur and McDermott [2010]. We confirmed
our previous finding that clean energy stocks have not yet become an effective direct hedge for
cryptocurrencies. However, we found compelling evidence that clean energy can be viewed as a safe
haven for both black or green cryptocurrencies at the 10% quantiles of negative returns, in general;
it can be a safe haven in the 5% and 1% quantiles as well, depending on the selection of underlying
assets. In addition, clean energy is more likely to be a safe haven for dirty cryptocurrencies than for
clean cryptocurrencies in periods of extreme market volatility, subject to the selection of underlying
assets as well. In contrast, cryptocurrencies are not in general safe havens for clean energy stocks.
We believe that retail investors or institutional managers who have used or is seeking to use clean
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energy stocks to hedge cryptocurrencies would find this study beneficial for their investments and
portfolio constructions. Furthermore, it suggests that while cryptocurrencies have a significant
negative ecological impact this can be perhaps mitigated by investors in these assets also choosing
clean energy assets to act as safe havens. Portfolio stability and ecological protection are not
necessarily incompatible.

Finally, we adopted a widely used spillover measure by Diebold and Yilmaz [2012] to calculate
the spillover indices across selected markets. Overall, we found that the return and volatility
connectedness between clean energy and cryptocurrencies was much lower than that between clean
energy and the general equity market or between clean energy subsectors, which suggests that
clean energy markets are more associated with the general market, while cryptocurrencies are more
isolated and act as a separate asset class. To some extent, our results support the findings of Ji
et al. [2018] which claimed isolation of Bitcoin market. Investors in the financial market have not to
date really connected clean energy and either types of cryptocurrencies together, and they appear
to hold cryptocurrencies based on the intrinsic or expected value of cryptocurrencies and not based
on their fundamental differences in transaction mechanisms or energy acquisition channels, which
offers the potentials of using clean energy as a hedge or safe haven in the future. However, investors
should be also aware that clean energy stocks do not homogeneously react to the movements of
other markets in our case, while Pham [2019] discovered similar evidence in the oil market.

Our study also provides useful implications for policymakers, regulators, and cryptocurrency
founders. Apparently, the current policy of promoting greener energy is not appealing enough for
cryptocurrency investors as investors seem to be indifferent to investing in black and green cryp-
tocurrencies. The development of green energy and green cryptocurrencies has brought significant
environmental benefits compared to fossil energy and dirty cryptocurrencies. Restrictions and legal
constraints are still weak. Greater efforts should be made by the society to promote greener invest-
ments and arouse the environmental awareness of investors and founders of dirty cryptocurrency.
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Appendix A. DCCs between clean energy indices and cryptocurrencies over time

Figure Appendix A.1: DCCs between SPGTCED and cryptocurrencies

38



Figure Appendix A.2: DCCs between ECO and cryptocurrencies
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Figure Appendix A.3: DCCs between GRNBIO and cryptocurrencies
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Figure Appendix A.4: DCCs between GRNFUEL and cryptocurrencies
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Figure Appendix A.5: DCCs between GRNREG and cryptocurrencies
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Figure Appendix A.6: DCCs between GRNGEO and cryptocurrencies
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Figure Appendix A.7: DCCs between GRNSOLAR and cryptocurrencies
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Figure Appendix A.8: DCCs between GRNWIND and cryptocurrencies
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Appendix B. Return spillovers analysis using TVP-VAR

Table Appendix B.1: Average dynamic total return connectedness using TVP-VAR

GOLD SP500 SPGTCED ECO GRNBIO GRNFUEL GRNGEO GRNREG GRNSOLAR GRNWIND DCRYPT CCRYPT FROM
OTHERS

Gold 67.33 2.79 4.27 3.32 3.72 1.46 1.88 4.96 3 3.57 2.39 1.31 32.67
SP500 1.16 25.69 10.17 13.18 8.64 5.09 5.14 11.64 12.67 3.74 1.56 1.32 74.31
SPGTCED 1.28 9.07 21.99 15.23 7.3 6.92 4.79 13.17 10.59 7.44 1.19 1.03 78.01
ECO 0.91 11.46 14.78 21.98 8.23 9.36 4.59 9.81 13.5 3.33 0.96 1.08 78.02
GRNBIO 1.71 10.75 10.51 12.2 33.34 5 3.77 7.89 9.01 3.12 1.46 1.24 66.66
GRNFUEL 0.7 7.24 10.92 15.35 5.59 36.99 2.75 7.26 7.53 3.4 1.12 1.17 63.01
GRNGEO 1.29 8.06 9.2 8.62 5.05 3.27 44.21 8.55 5.89 3.32 1.48 1.06 55.79
GRNREG 1.75 10.43 13.72 10.38 5.74 4.86 4.64 22.92 11.64 11.35 1.43 1.13 77.08
GRNSOLAR 1.09 12.47 11.95 15.31 7.01 5.23 3.82 12.7 24.87 3.31 1.14 1.08 75.13
GRNWIND 1.76 5.91 13.05 6.51 3.8 4.22 3.14 18.28 4.98 36.3 1.17 0.87 63.7
DCRYPT 1.74 2.76 2.49 2.02 2.45 1.42 1.88 3.03 2.23 1.36 50.21 28.43 49.79
CCRYPT 1 2.54 2.23 2.51 2.44 1.74 1.28 2.41 2.13 0.81 29.06 51.86 48.14
TO others 14.39 83.49 103.31 104.62 59.96 48.56 37.68 99.71 83.17 44.75 42.95 39.73 762.32
Inc. own 81.73 109.18 125.29 126.61 93.3 85.55 81.89 122.62 108.03 81.05 93.16 91.59 TOTAL
NET -18.27 9.18 25.29 26.61 -6.7 -14.45 -18.11 22.62 8.03 -18.95 -6.84 -8.41 63.53

Figure Appendix B.1: Dynamic total return connectedness (TVP-VAR)
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Figure Appendix B.2: Dynamic directional return connectedness FROM others (TVP-VAR)

Figure Appendix B.3: Dynamic directional return connectedness TO others (TVP-VAR)
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Figure Appendix B.4: Total net return connectedness (TVP-VAR)

Figure Appendix B.5: Net pairwise directional return connectedness for DCRYPT (TVP-VAR)
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Figure Appendix B.6: Net pairwise directional return connectedness for CCRYPT (TVP-VAR)
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Appendix C. Volatility spillovers analysis using TVP-VAR

Table Appendix C.1: Average dynamic total volatility connectedness using TVP-VAR

GOLD SP500 SPGTCED ECO GRNBIO GRNFUEL GRNGEO GRNREG GRNSOLAR GRNWIND DCRYPT CCRYPT FROM
OTHERS

GOLD 35.43 4.21 9.7 10.1 6.18 5.5 2.95 9.13 6.86 6.05 1.92 1.96 64.57
SP500 3.49 25.84 10.81 9.49 11.11 4.57 3.14 13.17 9.48 5.7 2.35 0.87 74.16
SPGTCED 4.78 7.54 18.39 14.03 10.05 7.37 4.82 12.94 10.39 6.87 1.66 1.14 81.61
ECO 4.95 7.97 14.75 17.72 10.6 7.95 4.27 11.47 10.73 6.45 1.74 1.39 82.28
GRNBIO 4.38 10.38 11.74 10.95 21.48 4.53 5.08 12.2 8.78 6.08 2.75 1.66 78.52
GRNFUEL 3.96 4.32 12.98 12.32 6.51 33.73 4.72 8.5 5.33 6.1 0.7 0.84 66.27
GRNGEO 4.23 6.53 11.26 9.87 8.33 4.49 30.87 8.78 6.81 5.86 1.48 1.48 69.13
GRNREG 4.36 9.11 13.96 11.06 9.38 6.72 3.97 18.27 10.01 8.74 2.86 1.56 81.73
GRNSOLAR 4.41 9.38 13.03 12.99 9.72 5.13 3.45 13.23 18.36 6.11 2.64 1.55 81.64
GRNWIND 4.05 4.63 12.9 10.56 7.09 6.75 4.62 15.25 7.63 21.05 3.18 2.29 78.95
DCRYPT 2.51 3.65 3.74 3.56 4.73 1.47 1.07 6.77 4.05 5.2 45.79 17.46 54.21
CCRYPT 1.36 1.66 3.21 3.82 3.04 2.47 1.4 4.6 2.48 2.76 17.92 55.27 44.73
TO OTHERS 42.48 69.4 118.08 108.74 86.74 56.95 39.48 116.05 82.54 65.91 39.22 32.2 857.79
Inc. OWN 77.91 95.24 136.47 126.46 108.22 90.68 70.35 134.32 100.91 86.96 85 87.47 TOTAL
NET -22.09 -4.76 36.47 26.46 8.22 -9.32 -29.65 34.32 0.91 -13.04 -15 -12.53 71.48

Figure Appendix C.1: Dynamic total volatility connectedness (TVP-VAR)
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Figure Appendix C.2: Dynamic directional volatility connectedness FROM others (TVP-VAR)

Figure Appendix C.3: Dynamic directional volatility connectedness TO others (TVP-VAR)
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Figure Appendix C.4: Total net volatility connectedness (TVP-VAR)

Figure Appendix C.5: Net pairwise directional volatility connectedness for DCRYPT (TVP-VAR)
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Figure Appendix C.6: Net pairwise directional volatility connectedness for CCRYPT (TVP-VAR)
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